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1. Introduction

As a satellite passes into or out of eclipse shadowing, the solar array passes through a penumbral
region of space where it is only partially illuminated. During this period, the satellite electrical loads
ideally shift smoothly from battery power to solar array power. However, a smooth load shift of this ,
kind requires that the satellite loads do not change rapidly with time during the penumbral transit. If
the satellite loads shift significantly during the penumbral transit, which lasts on the order of 10 s, the
batteries can experience alternating charge and discharge current pulses. In the case where direct
energy transfer from the batteries to the bus is used, the alternating charge and discharge pulses can
cause the battery to apply a voltage ripple to the satellite power bus. Here we evaluate the magnitude
of the battery voltage ripple based on test data obtained from a 60-Ah nickel-hydrogen cell.




2. Test Description

The cell used in these tests was an RNH 60-5 nickel-hydrogen cell manufactured by Eagle-Picher
Technologies in Joplin, MO. The cell was built with a dual-layer Zircar separator, and was activated
with 31% KOH electrolyte. Prior to these tests, this cell was subjected to approximately 15,000 life
test cycles at 60% depth of discharge (DOD). The cell was also subjected to extensive high-rate
overcharge at several times during the cycling, which led to significant capacity loss and failure to
support a2 60% DOD LEO cycle. The cell capacity had dropped to about 4550 Ah after the cycling
test. The cell was then stored in a fully discharged state at ambient temperature about two years ‘
before the testing reported here. The cell was stored with significant hydrogen precharge that had
built up during the cycling test, and thus experienced some additional capacity loss. At the time of
these tests, this 60-Ah cell delivered approximately 40 Ah of capacity. Itis clearly representative of a
nickel-hydrogen cell at end of life. In this report, all depths of discharge are determined based on the
actual capacity of the cell, which is about 40 Ah. The C rate for this cell is 60 A.

This cell was maintained at nominal temperatures of either 0°C or 10° C for these tests in a liquid-
filled coolant reservoir. A bipolar power supply (KEPCO 20-20M) having a 0.1-ms current rise time
- was used in these tests. Before any tests were done, a wakeup cycle consisting of a C/10 recharge for

16 h, followed by a C/4 discharge to 1.0 V was performed. Prior to each subsequent test, the cell was
recharged for 16 h at a C/10 charge rate.

The cell voltage fluctuations were measured in response to C/4 charge and C/4 discharge pulses that
were applied to the cell at the end of discharge at several depths of discharge. Eight charge and dis-
charge pulses, each lasting 0.5 s, were applied to the cell while the cell voltage was monitored with 18
ms time resolution. In addition, the effect of pulse load fluctuations was examined at the end of
recharge in response to C/10 charge and C/4 discharge pulses that were applied to the cell at the end
of charge when the cell was at 100% state of charge.

The charge voltage behavior of the cell is indicated in Figure 1 for the three cycles performed during
the testing reported here, and the discharge voltage behavior is reported in Figure 2. The first of these
cycles was a wakeup cycle at 0°C with an 18-Ah discharge. The second cycle was at 10°C, and
involved full recharge at C/10 followed by full discharge at a C/4 rate. The third cycle was at 0°C,
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Figure 1. Recharge behavior of 60-Ah test cell during the three cycles conducted.

Time (seconds)

60000

1.45

— Discharge 1 at 0 deg C (30% DOD)

1.40

A\

— Discharge 2at 10 deg C
-—Discharge 3at0deg C

1.35

1.30

N

1.25

1.20

115

1.10

1.05

1.00
0

T T

1000 2000

Figure 2. Discharge behavior of 60-Ah test cell during the three cycles conducted.
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and involved full recharge at C/10 followed by full discharge at a C/4 rate. Figures 3 and 4 show
typical voltage responses to the cell load fluctuations at the end of recharge and after a C/4 discharge
for 1.2 h (~ 55% SOC, 18 Ah discharged), respectively.
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Figure 3. Typical pulses at end of charge between +6 A and 15 A at 10°C.
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Figure 4. Typical pulses at end of discharge between +15 A and —15 A at 10°C.




3. Analysis of Data

Pulse data such as that shown in Figures 3 and 4 were analyzed to extract two types of resistance.

The first, referred to as R, corresponds to the high-frequency (~500 Hz) impedance of the cell, and
corresponds essentially to the resistance of the leads and the electrolyte. In the pulse measurements
obtained here, this resistance causes the instantaneous voltage drop in response to the current change.
Ry, is typically about 1 mQ for a nickel-hydrogen cell, and may vary depending on the design of a
cell or battery conductors. The second type of resistance, Rpol’ corresponds to the polarization of the
electrodes over the 0.5-s interval that a current transient is applied. R, will increase as the time is
extended from when the current transient was applied and will decrease as the currents are increased,
but will be similar for all cells using nickel electrodes of the same generic design.

Figure 5 shows typical voltage transients recorded at 0°C and different states of charge, and Figure 6
shows similarly recorded data at 10°C. In Figures 5 and 6, the voltage transient is plotted vs. the
square root of time, since the diffusive polarization processes lend themselves to linear extrapolation
in such a plot. R is obtained from these transients by fitting the voltage measurements just prior to
initiation of the transient to a linear function, and also by fitting the voltage measurements just after
the application of the transient to a linear function. At the instant when the transient was applied, the
difference between these two linear functions, when divided by the change in current, provides Reaye
The difference between the pre-transient voltage and the voltage after 0.5 s, when divided by the
change in current, provides Ry + R, Table 1 indicates the resistances that were obtained.
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Figure 5.  Voltage transients recorded at 0°C when applying +15 A of charge
current after discharging 18 Ah of capacity from a 60-Ah cell.
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Figure 6.  Voltage transients recorded at 10°C when applying +15 A of charge
current after discharging 18 Ah of capacity from a 60-Ah cell.

Table 1.  Resistances Obtained for a 60-Ah NiH, Cell at EOL for
the Transition from C/4 Discharge to C/4 Charge

SOC  Temperature Reell Rpol
(%) (°C) (mQ (mQ)
100 10 1.034 0.282
55 10 1.034 0.415
10 10 0.987 0.712
5 10 0.988 1.077
100 0 1.033 0.610
55 0 1.033 0.850
5 0 1.008 1.603

As expected, the value of R does not vary significantly with state of charge or current because this
is simply the resistance of the internal cell leads and the electrolyte between the electrodes in the cell.
It also displays little variation with temperature for this cell because the positive temperature coeffi-
cient of the electrolyte is essentially offset by the negative temperature coefficient of the nickel leads.
This may not be true for all cells and will depend on the relative contributions of leads and electrolyte
to the ohmic cell resistance.

The value of Rpol does vary significantly with both state of charge and temperature. It increases as
the cell is discharged and as the cell temperature is decreased. A drop in temperature of 10°C appears
to more than double the polarization resistance.



5. Battery Voltage Ripple Implications

Assuming that battery loads vary with approximately a 1-s period and have an amplitude of about C/2
when the battery passes from discharge to recharge (penumbral transit), the resistances reported in
Table 1 can be used to estimate battery voltage ripple, AV.

AV = Al (R + NRy)), M

where N is the number of series-connected cells in the battery, and Ry, corresponds to the high-
frequency resistance of the battery (typically measured at 500 Hz). For a battery consisting of 22
cells, such as that tested here, and negligible additional wiring resistance, Rpa =22 R ;. For other
types of batteries that do not use individual pressure vessel cells, such as single pressure vessel (SPV)

batteries, the measured R, ,,, may be used in Eq. 1.

Table 2 provides some estimates of the voltage ripple expected over the range of test conditions used
here, assuming a 22-cell battery with no added wiring resistance. Additional wiring in the battery or
higher ohmic battery resistance could increase the resistance and give more voltage ripple.

Table 2. Voltage Ripple Estimates for a 22-Cell 60-Ah NiH,
Battery with No External Cell Wiring Resistance

SOC Temperature Rpatt 22 x Rpq AV

(%) (°C) (mQ) (mQ) )
100 10 22.75 6.20 0.868
55 . 10 22.75 9.13 0.958
10 10 21.71 15.66 1.121
5 10 21.74 23.69 1.363
100 0 2273 13.42 1.084
55 o 22.73 18.70 1.243
5 0 22.18 35.27 1.723




4. Conclusions

The design of all satellite power systems should include sufficient voltage regulation to be tolerant of
ripple caused by worst-case load fluctuations during penumbral transit.

The voltage ripple expected in a satellite power system should be estimated based on the measure-
ment methods described here, and using the worst-case load fluctuations possible in the power system
during penumbral transit. This estimate should be made at the lowest expected battery temperature
and the highest DOD, and shouild be based on the performance of an end-of-life battery, such as that
tested here. The system should then be designed to tolerate the worst-case voltage ripple that could

result. For the operating conditions discussed here, such ripple can easily be over 1 V, but is not
likely toexceed 1.5 V.
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